Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? Part 2: 3D Solids

نویسندگان

  • Leiting Dong
  • Satya N. Atluri
چکیده

The SGBEM-FEM alternating method is compared with the recently popularized XFEM, for analyzing mixed-mode fracture and fatigue growth of 3D nonplanar cracks in complex solid and structural geometries. A large set of 3D examples with different degrees of complexity is analyzed by the SGBEM-FEM alternating method, and the numerical results are compared with those obtained by XFEM available in the open literature. It is clearly shown that: (a) SGBEM-FEM alternating method gives extremely high accuracy for the stress intensity factors; but the XFEM gives rather poor computational results, even for the most simple 3D cracks; (b) while SGBEM-FEM alternating method requires very coarse meshes, which are independent of each other, for both the uncracked solid as well as the non-planar crack-surface, XFEM requires, on the other hand, an extremely fine mesh for 3D solids, which can sometimes be un-usable on a normal PC; (c) the SGBEM-FEM alternating method requires very minimal computational as well as human-labor costs for modeling the non-planar fatigue growth of 3D cracks; on the other hand, fatigue analysis by XFEM requires intensive computational as well as human-labor costs even for the most simple problems; (d) because of the very poor accuracy for the stress intensity factors as computed by XFEM, the number fatigue cycles for crack-growth and failure as predicted by XFEM are meaningless for the most part, even for the most simple 3D problems computed even with extremely fine meshes; (e) with very low computational as well as human-labor costs, the SGBEM-FEM alternating method can very accurately model complex 3D cracked-solids easily, even for those cases which are too complex to be solved by XFEM . It is thus concluded that the SGBEM-FEM alternating method, among the many alternating methods developed in the past 20-30 years by Atluri and his many collaborators, are far more efficient, far more accurate, and far more reliable than XFEM for analyzing fracture and 3D non-planar fatigue crack propagation in complex structures. The implementation of the SGBEM-related method as presented in this study, as well as those presented in its companion Part 1 [Dong and 1 Center for Aerospace Research & Education, University of California, Irvine 380 Copyright © 2013 Tech Science Press CMES, vol.90, no.5, pp.379-413, 2013 Atluri (2013b)], in general-purpose off-the-shelf commercial software, is greatly valuable and is thus being pursued by the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? Part 1: 2D Structures

In this paper, and its companion Part 2 [Dong and Atluri (2013b)], the Symmetric Galerkin Boundary Element Method (SGBEM), and the SGBEMFEM alternating/coupling methods, are compared with the recently popularized Extended Finite Element Method (XFEM), for analyzing fracture and fatigue crack propagation in complex structural geometries. The historical development, and the theoretical/algorithmi...

متن کامل

Three-Dimensional SGBEM-FEM Alternating Method for Analyzing Fatigue-Crack Growth in and the Life of Attachment Lugs

In the present paper, stress intensity factor (SIF) analyses and fatigue-crack-growth simulations of corner cracks emanating from loaded pinholes of attachment lugs in structural assemblies are carried out for different load cases. A three-dimensional (3D) symmetric Galerkin boundary-element method (SGBEM) and FEM alternating method is developed to analyze the nonplanar growth of these surface ...

متن کامل

Mixed-mode fracture & non-planar fatigue analyses of cracked I-beams, using a 3D SGBEM–FEM Alternating Method

In the present paper, computations of mixed mode stress intensity factor (SIF) variations along the crack front, and fatigue-crack-growth simulations, in cracked I-beams, considering different load cases and initial crack configurations, are carried out by employing the three-dimensional SGBEM (Symmetric Galerkin Boundary Element Method)–FEM (Finite Element Method) Alternating Method. For mode-...

متن کامل

SGBEM (for Cracked Local Subdomain) – FEM (for uncracked global Structure) Alternating Method for Analyzing 3D Surface Cracks and Their Fatigue-Growth

As shown in an earlier work, the FEM-BEM alternating method is an efficient and accurate method for fracture analysis. In the present paper, a further improvement is formulated and implemented for the analyses of three-dimensional arbitrary surface cracks by modeling the cracks in a local finite-sized subdomain using the symmetric Galerkin boundary element method (SGBEM). The finite element met...

متن کامل

Combining SGBEM and FEM for modeling 3D cracks

The SGBEM-FEM alternating method suitable for the solution of elastic and elasticplastic three-dimensional fracture mechanics problems is presented. The crack is modeled by the symmetric Galerkin boundary element method (SGBEM), as a distribution of displacement discontinuities in an infinite medium. The finite element method (FEM) is used for stress analysis of the uncracked finite body. The s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013